A theory is described for the dynamic proton dipolar polarization observed by Haupt (1972) in 4-methylpyridine following a sudden temperature change. The theory differs from that of Haupt in assuming that transitions which change the rotational quantum number of the 4-methyl group by +or-3 occur very rapidly, maintaining thermal equilibrium within each of the three subsets of rotational levels corresponding to the three methyl group proton spin symmetry species A, Ea and Eb. The difference of A and E species populations approaches the new equilibrium value slowly and exponentially, following the temperature jump, and generates dipolar polarization in the process. Transitions between Ea and Eb species lead to destruction of the polarization,...