Thesis (Ph.D.) - Indiana University, Philosophy, 2013My dissertation concerns the proper foundation for the intuitionistic mathematics whose development began with L.E.J. Brouwer's work in the first half of the 20th Century. It is taken for granted by most philosophers, logicians, and mathematicians interested in foundational questions that intuitionistic mathematics presupposes a special, proof-conditional theory of meaning for mathematical statements. I challenge this commonplace. Classical mathematics is very successful as a coherent body of theories and a tool for practical application. Given this success, a view like Dummett's that attributes a systematic unintelligibility to the statements of classical mathematicians fails to save the...