This article is concerned with modulus of continuity of Brownian local times. Specifically, we focus on three closely related problems: (a) Limit theorem for a Brownian modulus of continuity involving Riesz potentials, where the limit law is an intricate Gaussian mixture. (b) Central limit theorems for the projections of L2L2 modulus of continuity for a one-dimensional Brownian motion. (c) Extension of the second result to a two-dimensional Brownian motion. Our proofs rely on a combination of stochastic calculus and Malliavin calculus tools, plus a thorough analysis of singular integrals
To appear in "Journal of Functional Analysis"International audienceBy using Malliavin calculus and m...
In this work, we generalise the stochastic local time space integration introduced in \cite{Ei00} to...
AbstractWe consider a broad class of continuous martingales whose local modulus of continuity is in ...
This is the published version, also available here: http://dx.doi.org/10.1214/ECP.v14-1511.The purpo...
This is the published version, also available here: http://dx.doi.org/10.1214/ECP.v15-1573.The purpo...
AbstractIn this article, we study the family of probability measures (indexed by t∈R+∗), obtained by...
This thesis is devoted to the study of the convergence in distribution of functionals of Gaussian pr...
Let B = (Bt)t≥0 be a standard Brownian motion and let (Lxt; t ≥ 0, x ∈R) be a continuous version of ...
In this paper, we present the asymptotic theory for integrated functions of increments of Brownian l...
In this paper we study the local times of Brownian motion from the point of view of algorithmic rand...
In this dissertation, we investigate some problems in fractional Brownian motion and stochastic part...
This thesis consists of two quite distinct topics. In the first and bigger part we show that the Man...
We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Br...
Using Fourier analysis, we study local limit theorems in weak-convergence problems. Among many appli...
AbstractWe study different examples of singular perturbations of one-dimensional stochastic differen...
To appear in "Journal of Functional Analysis"International audienceBy using Malliavin calculus and m...
In this work, we generalise the stochastic local time space integration introduced in \cite{Ei00} to...
AbstractWe consider a broad class of continuous martingales whose local modulus of continuity is in ...
This is the published version, also available here: http://dx.doi.org/10.1214/ECP.v14-1511.The purpo...
This is the published version, also available here: http://dx.doi.org/10.1214/ECP.v15-1573.The purpo...
AbstractIn this article, we study the family of probability measures (indexed by t∈R+∗), obtained by...
This thesis is devoted to the study of the convergence in distribution of functionals of Gaussian pr...
Let B = (Bt)t≥0 be a standard Brownian motion and let (Lxt; t ≥ 0, x ∈R) be a continuous version of ...
In this paper, we present the asymptotic theory for integrated functions of increments of Brownian l...
In this paper we study the local times of Brownian motion from the point of view of algorithmic rand...
In this dissertation, we investigate some problems in fractional Brownian motion and stochastic part...
This thesis consists of two quite distinct topics. In the first and bigger part we show that the Man...
We construct the analogue of Gaussian multiplicative chaos measures for the local times of planar Br...
Using Fourier analysis, we study local limit theorems in weak-convergence problems. Among many appli...
AbstractWe study different examples of singular perturbations of one-dimensional stochastic differen...
To appear in "Journal of Functional Analysis"International audienceBy using Malliavin calculus and m...
In this work, we generalise the stochastic local time space integration introduced in \cite{Ei00} to...
AbstractWe consider a broad class of continuous martingales whose local modulus of continuity is in ...