Rootkits refer to software that is used to hide the presence of malware from system/network administrators and permit an attacker to take control of a computer. In our previous work, we designed a system that would categorize rootkits based on the hooks that had been created. Focusing on rootkits that use inline function hooking techniques, we showed that our system could successfully categorize a sample of rootkits using unsupervised EM clustering. In this paper, we extend our previous work by outlining a new procedure to help system/network administrators identify the rootkits that have infected their machines. Using a logistic regression model for profiling families of rootkits, we were able to identify at least one of the rootkits that ...