In this paper, we introduce a notion of barycenter in the Wasserstein space which generalizes McCann's interpolation to the case of more than two measures. We provide existence, uniqueness, characterizations and regularity of the barycenter, and relate it to the multimarginal optimal transport problem considered by Gangbo and 'Swi¸ech in [8]. We also consider some examples and in particular rigorously solve the gaussian case. We finally discuss convexity of functionals in the Wasserstein space.ou
We develop the theory of a metric, which we call the $\nu$-based Wasserstein metric and denote by $W...
We present new algorithms to compute the mean of a set of empirical probability measures under the o...
In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a ...
Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. T...
International audienceThis paper is concerned by the study of barycenters for random probability mea...
This work surveys developments in optimal transportation. The first three chapters develop backgroun...
The optimal transportation problem originally introduced by G. Monge in 1781 and rediscovered by L. ...
Cette thèse se concentre sur l'analyse de données présentées sous forme de mesures de probabilité su...
We define a notion of barycenter for random probability measures in the Wasserstein space. We give a...
We present new algorithms to compute the mean of a set of N empirical probability measures under the...
Le problème du transport optimal, initialement introduit par G. Monge en 1781 et redécouvert par L. ...
Cette thèse étudie des problèmes variationnels comprenant plusieurs fonctionnelles de transport opti...
The concept of barycenter in the Wasserstein space corresponds to define a notion of Fréchet mean of...
International audienceWe study barycenters in the Wasserstein space Pp(E) of a locally compact geode...
In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a ...
We develop the theory of a metric, which we call the $\nu$-based Wasserstein metric and denote by $W...
We present new algorithms to compute the mean of a set of empirical probability measures under the o...
In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a ...
Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. T...
International audienceThis paper is concerned by the study of barycenters for random probability mea...
This work surveys developments in optimal transportation. The first three chapters develop backgroun...
The optimal transportation problem originally introduced by G. Monge in 1781 and rediscovered by L. ...
Cette thèse se concentre sur l'analyse de données présentées sous forme de mesures de probabilité su...
We define a notion of barycenter for random probability measures in the Wasserstein space. We give a...
We present new algorithms to compute the mean of a set of N empirical probability measures under the...
Le problème du transport optimal, initialement introduit par G. Monge en 1781 et redécouvert par L. ...
Cette thèse étudie des problèmes variationnels comprenant plusieurs fonctionnelles de transport opti...
The concept of barycenter in the Wasserstein space corresponds to define a notion of Fréchet mean of...
International audienceWe study barycenters in the Wasserstein space Pp(E) of a locally compact geode...
In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a ...
We develop the theory of a metric, which we call the $\nu$-based Wasserstein metric and denote by $W...
We present new algorithms to compute the mean of a set of empirical probability measures under the o...
In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a ...