Nous proposons une méthode de classification basée sur l'estimation de mélanges de lois, le point nouveau étant que les unités statistiques sont décrites par des lois de probabilité. Les composantes du mélange sont des processus de Dirichlet, des processus Gamma pondérés normalisés ou des processus de Kraft utilisés en satististique non paramétrique Bayesienne. Les mélanges obtenus par des algorithmes appliqués aux marginales des composantes en dimension finie convergent vers le mélange souhaité lorsque la dimension augmente car les composantes sont orthogonales grâce à un théorème de Kakutani et leur support sont alors les classes recherchées.We propose a clustering method based on the estimation of mixtures of probability distributions, t...
Bayesian nonparametric mixture models are often employed for modelling complex data. While these mod...
Il problema della stima del numero di componenti di una mistura che ha generato un insieme di dati p...
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange...
We define a continuous time stochastic process such that each is a Ferguson-Dirichlet random distrib...
In this paper we propose a clustering technique for discretely observed continuous-time models in o...
A useful step in data analysis is clustering, in which observations are grouped together in a hopefu...
Cluster analysis is concerned with partitioning cases into clusters such that the cases in a cluster...
Bayesian nonparametric mixture models are common for modeling complex data. While these models are w...
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dir...
In this paper we propose a clustering technique for continuous-time semi- Markov models in order to ...
The paper deals with the problem of determining the number of components in a mixture model. We take...
An interesting problem, not often faced under the Bayesian nonparametric framework, is the clusterin...
none2In this paper, we propose a method to group a set of probability density functions (pdfs) into ...
In this dissertation, we propose several methodology in clustering and mixture modeling when the use...
We generalize traditional goals of clustering towards distinguishing components in a non-parametric ...
Bayesian nonparametric mixture models are often employed for modelling complex data. While these mod...
Il problema della stima del numero di componenti di una mistura che ha generato un insieme di dati p...
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange...
We define a continuous time stochastic process such that each is a Ferguson-Dirichlet random distrib...
In this paper we propose a clustering technique for discretely observed continuous-time models in o...
A useful step in data analysis is clustering, in which observations are grouped together in a hopefu...
Cluster analysis is concerned with partitioning cases into clusters such that the cases in a cluster...
Bayesian nonparametric mixture models are common for modeling complex data. While these models are w...
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dir...
In this paper we propose a clustering technique for continuous-time semi- Markov models in order to ...
The paper deals with the problem of determining the number of components in a mixture model. We take...
An interesting problem, not often faced under the Bayesian nonparametric framework, is the clusterin...
none2In this paper, we propose a method to group a set of probability density functions (pdfs) into ...
In this dissertation, we propose several methodology in clustering and mixture modeling when the use...
We generalize traditional goals of clustering towards distinguishing components in a non-parametric ...
Bayesian nonparametric mixture models are often employed for modelling complex data. While these mod...
Il problema della stima del numero di componenti di una mistura che ha generato un insieme di dati p...
Dans la première partie de cette thèse nous passons en revue la classification par modèle de mélange...