Nous étudions dans cette Note la résolution d'équations différentielles ordinaires pour des champs de vecteurs peu réguliers à divergence nulle. Après avoir observé qu'il est équivalent de résoudre les équations de transport associées (i.e. les équations de Liouville), nous montrons des résultats d'existence, d'unicité et de stabilité pour des champs de vecteurs génériques dans L1 ou pour des champs de vecteurs W1.1 par morceaux .We study in this Note ordinary differential equations for divergence-free vector-fields with a limited regularity. We first observe that it is equivalent to solve the associated transport equations (i.e. Liouville equations). Then, we show existence, uniqueness, and stability results for generic vector-fields in L...
We prove uniqueness for two dimensional transport across a noncharacteristic curve, under the hypoth...
Transport equations arise in various areas of fluid mechanics, but the precise conditions on the vec...
In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theo...
International audienceWe provide in this article a new proof of the uniqueness of the flow solution ...
International audienceWe provide in this article a new proof of the uniqueness of the flow solution ...
In this survey we describe some well-posedness results for the linear transport equation that are av...
In this survey we describe some well-posedness results for the linear transport equation that are av...
Cette thèse est consacrée aux équations différentielles ordinaires et aux équations de transport ass...
We consider transport of a passive scalar advected by an irregular divergence free vector field. Giv...
We give an example of a bounded divergence free autonomous vector field in R3 (and of a nonautonomou...
Abstract. Using the characterization of last multipliers as solutions of the Liouville’s transport e...
In this paper we analyse the selection problem for weak solutions of the transport equation with rou...
AbstractThe Cauchy problem for a multidimensional linear non-homogeneous transport equation in diver...
We give an example of a bounded divergence free autonomous vector field in R3 (and of a nonautonomou...
The transport equation $$ \partial_t u + b \cdot \nabla u=0 $$ models several physical phenomena...
We prove uniqueness for two dimensional transport across a noncharacteristic curve, under the hypoth...
Transport equations arise in various areas of fluid mechanics, but the precise conditions on the vec...
In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theo...
International audienceWe provide in this article a new proof of the uniqueness of the flow solution ...
International audienceWe provide in this article a new proof of the uniqueness of the flow solution ...
In this survey we describe some well-posedness results for the linear transport equation that are av...
In this survey we describe some well-posedness results for the linear transport equation that are av...
Cette thèse est consacrée aux équations différentielles ordinaires et aux équations de transport ass...
We consider transport of a passive scalar advected by an irregular divergence free vector field. Giv...
We give an example of a bounded divergence free autonomous vector field in R3 (and of a nonautonomou...
Abstract. Using the characterization of last multipliers as solutions of the Liouville’s transport e...
In this paper we analyse the selection problem for weak solutions of the transport equation with rou...
AbstractThe Cauchy problem for a multidimensional linear non-homogeneous transport equation in diver...
We give an example of a bounded divergence free autonomous vector field in R3 (and of a nonautonomou...
The transport equation $$ \partial_t u + b \cdot \nabla u=0 $$ models several physical phenomena...
We prove uniqueness for two dimensional transport across a noncharacteristic curve, under the hypoth...
Transport equations arise in various areas of fluid mechanics, but the precise conditions on the vec...
In this paper we provide a complete analogy between the Cauchy-Lipschitz and the DiPerna-Lions theo...