Motivated by applications in financial mathematics, Ref. 3 showed that, although $$L^{0}(\mathbb{R}_{+}; \Omega, {\cal F}, \mathbb{P})$$ fails to be locally convex, an analogue to the classical bipolar theorem can be obtained for subsets of $$L^{0}(\mathbb{R}_{+}; \Omega, {\cal F}, \mathbb{P})$$ : if we place this space in polarity with itself, the bipolar of a set of non-negative random variables is equal to its closed (in probability), solid, convex hull. This result was extended by Ref. 1 in the multidimensional case, replacing $$\mathbb{R}_{+}$$ by a closed convex cone K of [0, infin)d, and by Ref. 12 who provided a conditional version in the unidimensional case. In this paper, we show that the conditional bipolar theorem of Ref. 12 c...