Dans cette thèse, on s'intéresse principalement aux fonctions zetas spectrales de graphes. Ce sont des fonctions d'une variable complexe associées à des graphes, qui font intervenir le spectre du Laplacien discret. On établit une formule asymptotique pour les fonctions zetas spectrales de graphes correspondant à des tores discrets dont le nombre de sommets tend vers l'infini. Dans cette formule apparaissent les fonctions zetas du graphe de Cayley des entiers Z^d ainsi que du tore continu. On montre à l'aide de cette formule qu'une certaine équation fonctionnelle asymptotique pour les fonctions zetas des tores discrets est équivalente à l'hypothèse de Riemann. Cette équivalence est en fait vraie dans un contexte plus large, celui des fonctio...
2011 Spring.Includes bibliographical references.Curves with as many points as possible over a finite...
AbstractA graph theoretical analog of Brauer–Siegel theory for zeta functions of number fields is de...
This thesis investigates the spectral zeta function of fractal differential operators such as the La...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
In the first chapter, we recall and study the main classical results of the Riemann zeta function. T...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
Abstract. The Riemann zeta function at integer arguments can be written as an infinite sum of certai...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
In this thesis we study the zeta function formalism of finitely summable spectral triples in noncomm...
Cette thèse traite de la théorie spectrale des opérateurs de Schrödinger discrets H( ) := - + b sur ...
Abstract. We look at entire functions given as the zeta function λ>0 λ −s, where λ are the positi...
The definitions and main properties of the Ihara and Bartholdi zeta functions for infinite graphs ar...
The location of the nontrivial poles of a generalized zeta function is derived from the spectrum of ...
After a quick presentation of usual notations for the graph theory, we study the set of harmonic fun...
2011 Spring.Includes bibliographical references.Curves with as many points as possible over a finite...
AbstractA graph theoretical analog of Brauer–Siegel theory for zeta functions of number fields is de...
This thesis investigates the spectral zeta function of fractal differential operators such as the La...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
In the first chapter, we recall and study the main classical results of the Riemann zeta function. T...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
Abstract. The Riemann zeta function at integer arguments can be written as an infinite sum of certai...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
This Summer School on the Theory of Motives and the Theory of Numbers, at the crossroad of several L...
In this thesis we study the zeta function formalism of finitely summable spectral triples in noncomm...
Cette thèse traite de la théorie spectrale des opérateurs de Schrödinger discrets H( ) := - + b sur ...
Abstract. We look at entire functions given as the zeta function λ>0 λ −s, where λ are the positi...
The definitions and main properties of the Ihara and Bartholdi zeta functions for infinite graphs ar...
The location of the nontrivial poles of a generalized zeta function is derived from the spectrum of ...
After a quick presentation of usual notations for the graph theory, we study the set of harmonic fun...
2011 Spring.Includes bibliographical references.Curves with as many points as possible over a finite...
AbstractA graph theoretical analog of Brauer–Siegel theory for zeta functions of number fields is de...
This thesis investigates the spectral zeta function of fractal differential operators such as the La...