As robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, control design and stability analysis is inherently difficult since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events), and the target motion is a limit cycle (or more complex trajectory), rather than an equilibrium. For such walkers, stability and robustness analysis of even stable walking on flat ground is difficult. This thesis proposes new theoretical methods to analyse the stability and robustness of periodi...