Coreference resolution is the task of extracting referential expressions, or mentions, in text and clustering these by the entity or concept they refer to. The sustained research interest in the task reflects the richness of reference expression usage in natural language and the difficulty in encoding insights from linguistic and cognitive theories effectively. In this thesis, we design and implement LIMERIC, a state-of-the-art coreference resolution engine. LIMERIC naturally incorporates both non-local decoding and entity-level modelling to achieve the highly competitive benchmark performance of 64.22% and 59.99% on the CoNLL-2012 benchmark with a simple model and a baseline feature set. As well as strong performance, a key contribut...