Bug prediction has been a hot research topic for the past two decades, during which different machine learning models based on a variety of software metrics have been proposed. Feature selection is a technique that removes noisy and redundant features to improve the accuracy and generalizability of a prediction model. Although feature selection is important, it adds yet another step to the process of building a bug prediction model and increases its complexity. Recent advances in machine learning introduce embedded feature selection methods that allow a prediction model to carry out feature selection automatically as part of the training process. The effect of these methods on bug prediction is unknown. In this paper we study regularization...