Paraconsistent Weak Kleene logic (PWK) is the 3-valued logic with two designated values defined through the weak Kleene tables. This paper is a first attempt to investigate PWK within the perspective and methods of abstract algebraic logic (AAL). We give a Hilbert-style system for PWK and prove a normal form theorem. We examine some algebraic structures for PWK, called involutive bisemilattices, showing that they are distributive as bisemilattices and that they form a variety, IBSL, generated by the 3-element algebra WK; we also prove that every involutive bisemilattice is representable as the Płonka sum over a direct system of Boolean algebras. We then study PWK from the viewpoint of AAL. We show that IBSL is not the equivalent algebraic s...