Bei vielen physikalischen Fragestellungen ist es von Interesse, die topologische Komplexität magnetischer Felder, oder allgemeiner von divergenzfreien Feldern, mit Hilfe von Invarianten zu charakterisieren. Eine bekannte topologische Invariante ist die magnetische Helizität, die aber nur ein einfaches Maß für die topologische Komplexität darstellt. Ausgehend von höheren Massey-Produkten präsentiere ich Verschlingungsinvarianten höherer Ordnung in Form von Volumenintegralen, die Kreuzverschlingungen von mehreren Magnetfeldern erkennen können. Diese Invarianten sind topologisch, und damit Erhaltungsgrößen der idealen Magnetohydrodynamik. Desweiteren enthält die Arbeit die erste vollständige Konstruktion der Verschlingungsinvarianten basierend...
The helicity of a localized solenoidal vector field (i.e. the integrated scalar product of the field...
AbstractThe Massey product invariants of a link in S3 are expressed in terms of Magnus coefficients ...
The topological underpinning of magnetic fields connected to a planar boundary is naturally describe...
The topology of divergence-free fields is important in many parts of physics, e. g. in magnetohydrod...
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant...
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant...
An expression for a third-order link integral of three magnetic fields is presented. It is a topolog...
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line...
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line...
Newly emerging magnetic flux can show a complicated linked or interwoven topology of the magnetic fi...
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line...
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line...
Stability and reconnection of magnetic fields play a fundamental role in natural and manmade plasma....
In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept ...
Field line helicity measures the net linking of magnetic flux with a single magnetic field line. It ...
The helicity of a localized solenoidal vector field (i.e. the integrated scalar product of the field...
AbstractThe Massey product invariants of a link in S3 are expressed in terms of Magnus coefficients ...
The topological underpinning of magnetic fields connected to a planar boundary is naturally describe...
The topology of divergence-free fields is important in many parts of physics, e. g. in magnetohydrod...
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant...
The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant...
An expression for a third-order link integral of three magnetic fields is presented. It is a topolog...
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line...
A topological flux function is introduced to quantify the topology of magnetic braids: non-zero line...
Newly emerging magnetic flux can show a complicated linked or interwoven topology of the magnetic fi...
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line...
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line...
Stability and reconnection of magnetic fields play a fundamental role in natural and manmade plasma....
In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept ...
Field line helicity measures the net linking of magnetic flux with a single magnetic field line. It ...
The helicity of a localized solenoidal vector field (i.e. the integrated scalar product of the field...
AbstractThe Massey product invariants of a link in S3 are expressed in terms of Magnus coefficients ...
The topological underpinning of magnetic fields connected to a planar boundary is naturally describe...