Friesen M, Kondratiev Y. Stochastic Averaging Principle for Spatial Birth-and-Death Evolutions in the Continuum. JOURNAL OF STATISTICAL PHYSICS. 2018;171(5):842-877.We study a spatial birth-and-death process on the phase space of locally finite configurations Gamma(+) x Gamma(-) over R-d. Dynamics is described by an non-equilibrium evolution of states obtained from the Fokker-Planck equation and associated with the Markov operator L+(gamma(-)) + 1/epsilon L-, epsilon > 0. Here L(-)describes the environment process on Gamma(-) and L+(gamma(-)) describes the system process on Gamma(+), where gamma(-)indicates that the corresponding birth-and-death rates depend on another locally finite configuration gamma(-) is an element of Gamma(-). We prov...
Kondratiev Y, Lytvynov E, Röckner M. Non-equilibrium stochastic dynamics in continuum: The free case...
Kondratiev Y, Minlos R, Zhizhina E. Self-organizing birth-and-death stochastic systems in continuum....
Finkelshtein D, Kondratiev Y, Kutoviy O, Zhizhina E. On an aggregation in birth-and-death stochastic...
Friesen M, Kondratiev Y. WEAK-COUPLING LIMIT FOR ERGODIC ENVIRONMENTS. METHODS OF FUNCTIONAL ANALYSI...
Finkelshtein D, Kondratiev Y, Kutoviy O. ESTABLISHMENT AND FECUNDITY IN SPATIAL ECOLOGICAL MODELS: S...
Finkelshtein D, Kondratiev Y, Kutoviy O. Semigroup approach to birth-and-death stochastic dynamics i...
Finkelshtein D, Kondratiev Y, Kutoviy O. Statistical dynamics of continuous systems: perturbative an...
We consider birth-and-death processes of objects (animals) defined in $\Z^d$ having unit death rates...
The asymptotic behavior of a stochastic network represented by a birth and death processes of partic...
AbstractWe describe a general approach to the construction of a state evolution corresponding to the...
International audienceWe analyze a birth, migration and death stochastic process modeling the dynami...
The aim of this work is to establish essential properties of spatial birth-and-death processes with ...
We consider spatial population dynamics given by Markov birth-and-death process with constant mortal...
Finkelshtein DL, Kondratiev Y, Kutoviy OV, Lytvynov E. Binary jumps in continuum. I. Equilibrium pro...
We study a Markov birth-and-death process on a space of locally finite configurations, which describ...
Kondratiev Y, Lytvynov E, Röckner M. Non-equilibrium stochastic dynamics in continuum: The free case...
Kondratiev Y, Minlos R, Zhizhina E. Self-organizing birth-and-death stochastic systems in continuum....
Finkelshtein D, Kondratiev Y, Kutoviy O, Zhizhina E. On an aggregation in birth-and-death stochastic...
Friesen M, Kondratiev Y. WEAK-COUPLING LIMIT FOR ERGODIC ENVIRONMENTS. METHODS OF FUNCTIONAL ANALYSI...
Finkelshtein D, Kondratiev Y, Kutoviy O. ESTABLISHMENT AND FECUNDITY IN SPATIAL ECOLOGICAL MODELS: S...
Finkelshtein D, Kondratiev Y, Kutoviy O. Semigroup approach to birth-and-death stochastic dynamics i...
Finkelshtein D, Kondratiev Y, Kutoviy O. Statistical dynamics of continuous systems: perturbative an...
We consider birth-and-death processes of objects (animals) defined in $\Z^d$ having unit death rates...
The asymptotic behavior of a stochastic network represented by a birth and death processes of partic...
AbstractWe describe a general approach to the construction of a state evolution corresponding to the...
International audienceWe analyze a birth, migration and death stochastic process modeling the dynami...
The aim of this work is to establish essential properties of spatial birth-and-death processes with ...
We consider spatial population dynamics given by Markov birth-and-death process with constant mortal...
Finkelshtein DL, Kondratiev Y, Kutoviy OV, Lytvynov E. Binary jumps in continuum. I. Equilibrium pro...
We study a Markov birth-and-death process on a space of locally finite configurations, which describ...
Kondratiev Y, Lytvynov E, Röckner M. Non-equilibrium stochastic dynamics in continuum: The free case...
Kondratiev Y, Minlos R, Zhizhina E. Self-organizing birth-and-death stochastic systems in continuum....
Finkelshtein D, Kondratiev Y, Kutoviy O, Zhizhina E. On an aggregation in birth-and-death stochastic...