Let g = 1 or 2 and p > 3 be a prime. For the symplectic group GSp2g the Hecke eigensystems appearing in the spaces of classical automorphic forms, of a fixed tame level and varying weight, are p-adically interpolated by a rigid analytic space, the GSp2g-eigenvariety. A sufficiently small subdomain of the eigenvariety can be described as the rigid analytic space associated with a profinite algebra T. An irreducible component of T is defined by a profinite ring I and a morphism θ : T → I. In the residually irreducible case we can attach to θ a representation ρθ : Gal(Q/Q) → GSp2g(I). We study the image of ρθ when θ describes a positive slope component of T. In the case g = 1 this is a joint work with A. Iovita and J. Tilouine. Suppose either ...