Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs’ size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman...