Iron is an essential metal for fine-tuning the innate immune response through macrophage function. An integrative view of transcriptional and metabolic responses generated from iron perturbation in macrophages is lacking. Here we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses by integrating RNA-sequencing and stable isotope tracing. We show that acute iron deprivation causes an anti-proliferative Warburg transcriptome characterized by an ATF4-dependent signature. Metabolically, iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucosederived citrate pools associated with lipid drop...