Few studies have evaluated land surface models for African ecosystems. Here we evaluate the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP), soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and ET (0.5 < r < 0.9 inter...