The optimal parameters for nuclear excitation by electron capture in plasma environments generated by the interaction of ultra-strong optical lasers with solid matter are investigated theoretically. As a case study we consider a 4.85 keV nuclear transition starting from the long-lived 93Mo isomer that can lead to the release of the stored 2.4 MeV excitation energy. We find that due to the complex plasma dynamics, the nuclear excitation rate and the actual number of excited nuclei do not reach their maximum at the same laser parameters. The nuclear excitation achievable with a high-power optical laser is up to twelve and up to six orders of magnitude larger than the values predicted for direct resonant and secondary plasma-mediated excitatio...