We prove that the dilation of an $m \times n$ toroidal mesh in an $mn$-vertex path equals $2\min\{m,n\}$, if $m\not= n$ and $2n-1$, if $m=n$
We construct an N-node graph G which has (i) a layout with area O(N) and maximum edge length O(N1/2)...
Given any $n \in \mathbb{Z}^{+}$, we constructively prove the existence of covering paths and circui...
In this paper we explore one-to-one embeddings of 2-dimensional grids into their ideal 2-dimensional...
We prove that the dilation of an $m \times n$ toroidal mesh in an $mn$-vertex path equals $2\min\{m,...
The {\em dynamic planar point location problem} is the task of maintaining a dynamic set $S$ of $n$ ...
We give a short proof that the dilation of an m X n toroidal mesh in an mn-vertex path equals 2 min(...
We prove several exact results for the dilation of well-known interconnection networks in cycles, na...
AbstractWe consider efficient simulations of mesh connected networks (or good representations of arr...
AbstractIn this paper we explore one-to-one embeddings of two-dimensional grids into their ideal two...
A mesh of buses (MOB), a versatile parallel architecture, is obtained from a 2-dimensional mesh by r...
AbstractWe prove exact results on dilations in cycles for important parallel computer interconnectio...
Midimew networks [4] are mesh-connected networks derived from a subset of degree-4 circulant graphs....
We study the problem of Embedding Wirelength of $n$-dimensional Hypercube $Q_n$ into Cylinder $C_{2^...
Graph embedding problems have gained importance in the field of interconnection networks for paralle...
AbstractWe consider the problem of embedding hypercubes into cylinders to minimize the wirelength. F...
We construct an N-node graph G which has (i) a layout with area O(N) and maximum edge length O(N1/2)...
Given any $n \in \mathbb{Z}^{+}$, we constructively prove the existence of covering paths and circui...
In this paper we explore one-to-one embeddings of 2-dimensional grids into their ideal 2-dimensional...
We prove that the dilation of an $m \times n$ toroidal mesh in an $mn$-vertex path equals $2\min\{m,...
The {\em dynamic planar point location problem} is the task of maintaining a dynamic set $S$ of $n$ ...
We give a short proof that the dilation of an m X n toroidal mesh in an mn-vertex path equals 2 min(...
We prove several exact results for the dilation of well-known interconnection networks in cycles, na...
AbstractWe consider efficient simulations of mesh connected networks (or good representations of arr...
AbstractIn this paper we explore one-to-one embeddings of two-dimensional grids into their ideal two...
A mesh of buses (MOB), a versatile parallel architecture, is obtained from a 2-dimensional mesh by r...
AbstractWe prove exact results on dilations in cycles for important parallel computer interconnectio...
Midimew networks [4] are mesh-connected networks derived from a subset of degree-4 circulant graphs....
We study the problem of Embedding Wirelength of $n$-dimensional Hypercube $Q_n$ into Cylinder $C_{2^...
Graph embedding problems have gained importance in the field of interconnection networks for paralle...
AbstractWe consider the problem of embedding hypercubes into cylinders to minimize the wirelength. F...
We construct an N-node graph G which has (i) a layout with area O(N) and maximum edge length O(N1/2)...
Given any $n \in \mathbb{Z}^{+}$, we constructively prove the existence of covering paths and circui...
In this paper we explore one-to-one embeddings of 2-dimensional grids into their ideal 2-dimensional...