Recently, the frequency-dependent Moran process has been introduced in order to describe evolutionary game dynamics in finite populations. Here, an alternative to this process is investigated that is based on pairwise comparison between two individuals. We follow a long tradition in the physics community and introduce a temperature (of selection) to account for stochastic effects. We calculate the fixation probabilities and fixation times for any symmetric 2 x 2 game, for any intensity of selection and any initial number of mutants. The temperature can be used to gauge continuously from neutral drift to the extreme selection intensity known as imitation dynamics. For some payoff matrices the distribution of fixation times can become so broa...