This thesis is concerned with the development and application of conformal techniques to numerical calculations of asymptotically flat spacetimes. The conformal compactification technique enables us to calculate spatially unbounded domains, thereby avoiding the introduction of an artificial timelike outer boundary. We construct in spherical symmetry an explicit scri-fixing gauge, i.e. a conformal and a coordinate gauge in which the spatial coordinate location of null infinity is independent of time so that no resolution loss in the physical part of the conformal extension appears. Going beyond spherical symmetry, we develop a method to include null infinity in the computational domain. With this method, hyperboloidal initial value problems ...