Given an increasing sequence of dimensions, a flag in a vector space is an increasing sequence of subspaces with those dimensions. The set of all such flags (the flag manifold) can be projectively coordinatized using products of minors of a matrix. These products are indexed by tableaux on a Young diagram. A basis of “standard monomials” for the vector space generated by such projective coordinates over the entire flag manifold has long been known. A Schubert variety is a subset of flags specified by a permutation. Lakshmibai, Musili, and Seshadri gave a standard monomial basis for the smaller vector space generated by the projective coordinates restricted to a Schubert variety. Reiner and Shimozono made this theory more explicit by giving ...