AbstractIn this article, membrane perforation of endothelial cells with attached microbubbles caused by exposure to single-shot short pulsed ultrasound is described, and the mechanisms of membrane damage and repair are discussed. Real-time optical observations of cell-bubble interaction during sonoporation and successive scanning electron microscope observations of the membrane damage with knowledge of bubble locations revealed production of micron-sized membrane perforations at the bubble locations. High-speed observations of the microbubbles visualized production of liquid microjets during nonuniform contraction of bubbles, indicating that the jets are responsible for cell membrane damage. The resealing process of sonoporated cells visual...