AbstractThe latent variable and generalized linear modelling approaches do not provide a systematic approach for modelling discrete choice observational data. Another alternative, the probabilistic reduction (PR) approach, provides a systematic way to specify such models that can yield reliable statistical and substantive inferences. The purpose of this paper is to re-examine the underlying probabilistic foundations of conditional statistical models with binary dependent variables using the PR approach. This leads to the development of the Bernoulli Regression Model, a family of statistical models, which includes the binary logistic regression model. The paper provides an explicit presentation of probabilistic model assumptions, guidance on...