AbstractSystems of analytic functions which are simultaneously orthogonal over each of two domains were apparently first studied in particular cases by Walsh and Szegö, and in full generality by Bergman. In principle, these are very interesting objects, allowing application to analytic continuation that is not restricted (as Weierstrassian continuation via power series) either by circular geometry or considerations of locality. However, few explicit examples are known, and in general one does not know even gross qualitative features of such systems. The main contribution of the present paper is to prove qualitative results in a quite general situation.It is by now very well known that the phenomenon of “double orthogonality” is not restrict...