AbstractIn this paper we consider several concepts of approximate minima of a set in normed vector spaces and we provide some results concerning the stability of these minima under perturbation of the underlying set with a sequence of sets converging in the sense of Painlevé–Kuratowski to the initial set. Then, we introduce the concept of approximate solution for equilibrium problem governed by set-valued maps and we study the stability of these solutions. The particular case of linear continuous operators is considered as well
We introduce and study a new class of auxiliary problems for solving the equilibrium problem in Bana...
The aim of this paper is to investigate two concepts of approximate solutions to parametric variatio...
Abstract In this paper, we introduce a new kind of approximate weakly efficient solutions to the set...
AbstractIn this paper we consider several concepts of approximate minima of a set in normed vector s...
In this paper, we investigate stability of the optimal value function and the set of approximate sol...
In this paper, we prove an existence result for a solution to the vector equilibrium problems. Then,...
The present work is devoted to the study of stability in set optimization. In particular, a sequence...
In this paper, we characterize the solutions of vector equilibrium problems as well as dual vector e...
In this paper, we consider a class of parametric implicit vector equilibrium problems in Hausdorff t...
AbstractA certain convergence notion for extended real-valued functions, which has been studied by a...
Abstract. In this paper, we characterize the solutions of vector equi-librium problems as well as du...
In this article, various types of approximate solutions for vector quasivariational problems in Bana...
AbstractWe prove the existence of a solution to the generalized vector equilibrium problem with boun...
The paper develops a stability theory for the optimal value and the optimal set mapping of optimizat...
AbstractThe goal of this paper is to prove some general vector-valued perturbed equilibrium principl...
We introduce and study a new class of auxiliary problems for solving the equilibrium problem in Bana...
The aim of this paper is to investigate two concepts of approximate solutions to parametric variatio...
Abstract In this paper, we introduce a new kind of approximate weakly efficient solutions to the set...
AbstractIn this paper we consider several concepts of approximate minima of a set in normed vector s...
In this paper, we investigate stability of the optimal value function and the set of approximate sol...
In this paper, we prove an existence result for a solution to the vector equilibrium problems. Then,...
The present work is devoted to the study of stability in set optimization. In particular, a sequence...
In this paper, we characterize the solutions of vector equilibrium problems as well as dual vector e...
In this paper, we consider a class of parametric implicit vector equilibrium problems in Hausdorff t...
AbstractA certain convergence notion for extended real-valued functions, which has been studied by a...
Abstract. In this paper, we characterize the solutions of vector equi-librium problems as well as du...
In this article, various types of approximate solutions for vector quasivariational problems in Bana...
AbstractWe prove the existence of a solution to the generalized vector equilibrium problem with boun...
The paper develops a stability theory for the optimal value and the optimal set mapping of optimizat...
AbstractThe goal of this paper is to prove some general vector-valued perturbed equilibrium principl...
We introduce and study a new class of auxiliary problems for solving the equilibrium problem in Bana...
The aim of this paper is to investigate two concepts of approximate solutions to parametric variatio...
Abstract In this paper, we introduce a new kind of approximate weakly efficient solutions to the set...