AbstractA morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. We give characterizations of monomorphisms (respectively, epimorphisms) in pro-category pro-C, provided C has direct sums (respectively, pushouts).Let E(C) (respectively, M(C)) be the subcategory of C whose morphisms are epimorphisms (respectively, monomorphisms) of C. We give conditions in some categories C for an object X of pro-C to be isomorphic to an object of pro-E(C) (respectively, pro-M(C)).A related class of objects of pro-C consists of X such that there is an epimorphism X→P∈Ob(C) (respectively, a monomorphism P∈Ob(C)→X). Characterizing those objects involves conditions analogous (respectively, dual) to the Mittag–Lef...