AbstractInteger factorization is known to be one of the most important and useful methods in number theory and arithmetic. It also has a very close relationship to some algorithms in cryptography such as RSA algorithm. The RSA cryptosystem is one of the most popular and attractive public-key cryptosystems in the world today. Its security is based on the difficulty of integer factorization. Solving a large and sparse linear system over GF(2) is one of the most time consuming steps in most modern integer factorization algorithms including the fastest one, GNFS algorithm.The Montgomery block Lanczos method from Linbox [13] is for solving large and sparse linear systems over finite fields and it can be integrated into the general number field s...