AbstractLet jνk, yνk and cνk denote the kth positive zeros of the Bessel functions Jν(x), Yν(x) and of the general cylinder function Cν(x), respectively. We show, among other things, that, for k = 2, 3,… and 0 < ν < ∞, cνk is a concave function of ν, cνk > ν + c0k and cνk[v + (2π)c0k] decreases as ν increases. In the cases of jνk and yνk, these results hold also for k = 1
Abstract. Let j;1 be the smallest (first) positive zero of the Bessel function J(z), > −1, which...
AbstractLet ck(a, v, α) be the kth positive zero of the function aCv(x) + xC′v(x), where Cv(x) = cos...
Monotonicity with respect to the order m of the magnitude of general Bessel functions #m(x)fl aJm(x)...
AbstractLet cvk be the kth positive zero of the cylinder function Cv(x,α)=Jv(x) cos α−Yv sin α, 0⩽α<...
AbstractLet jνk, yνk and cνk denote the kth positive zeros of the Bessel functions Jν(x), Yν(x) and ...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
AbstractLet jvk and Cvk denote the kth positive zeros of the Bessel function Jv(x) of the first kind...
AbstractLet cvk be the kth positive zero of the cylinder function Cv(x,α)=Jv(x) cos α−Yv sin α, 0⩽α<...
AbstractLet ck(a, v, α) be the kth positive zero of the function aCv(x) + xC′v(x), where Cv(x) = cos...
AbstractLet jvk, yvk and cvk denote the kth positive zeros of the Bessel functions Jv(x), Yv(x) and ...
AbstractWe derive some inequalities for the cylinder function Cν(x, α) defined by Cv(x,α)=Jv(x)cos α...
AbstractIt is proved that the positive zeros jν, k, k = 1,2,…, of the Bessel function Jν(x) of the f...
AbstractLet jvk and Cvk denote the kth positive zeros of the Bessel function Jv(x) of the first kind...
Abstract. Let j;1 be the smallest (first) positive zero of the Bessel function J(z), > −1, which...
AbstractLet ck(a, v, α) be the kth positive zero of the function aCv(x) + xC′v(x), where Cv(x) = cos...
Monotonicity with respect to the order m of the magnitude of general Bessel functions #m(x)fl aJm(x)...
AbstractLet cvk be the kth positive zero of the cylinder function Cv(x,α)=Jv(x) cos α−Yv sin α, 0⩽α<...
AbstractLet jνk, yνk and cνk denote the kth positive zeros of the Bessel functions Jν(x), Yν(x) and ...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
New monotonicity and convexity properties for the zeros cνk (k=1,2,...) of the Bessel functions are...
AbstractLet jvk and Cvk denote the kth positive zeros of the Bessel function Jv(x) of the first kind...
AbstractLet cvk be the kth positive zero of the cylinder function Cv(x,α)=Jv(x) cos α−Yv sin α, 0⩽α<...
AbstractLet ck(a, v, α) be the kth positive zero of the function aCv(x) + xC′v(x), where Cv(x) = cos...
AbstractLet jvk, yvk and cvk denote the kth positive zeros of the Bessel functions Jv(x), Yv(x) and ...
AbstractWe derive some inequalities for the cylinder function Cν(x, α) defined by Cv(x,α)=Jv(x)cos α...
AbstractIt is proved that the positive zeros jν, k, k = 1,2,…, of the Bessel function Jν(x) of the f...
AbstractLet jvk and Cvk denote the kth positive zeros of the Bessel function Jv(x) of the first kind...
Abstract. Let j;1 be the smallest (first) positive zero of the Bessel function J(z), > −1, which...
AbstractLet ck(a, v, α) be the kth positive zero of the function aCv(x) + xC′v(x), where Cv(x) = cos...
Monotonicity with respect to the order m of the magnitude of general Bessel functions #m(x)fl aJm(x)...