AbstractSeveral new conditions for the invertibility of a polynomial map (/tf, g):C2 → C2 with a nonzero constant Jacobian determinant are presented. Flows of the Hamiltonian vector field (− /tfy, + /tfx) are the main tool
Abstract. Let F: Cn → Cn be an invertible map for which both F and F−1 are polynomials. Then degF−1 ...
AbstractIt is proved in [M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to th...
AbstractIn this paper we present a new large class of polynomial mapsF=X+H:An→An(Definition 1.1) on ...
AbstractSeveral new conditions for the invertibility of a polynomial map (/tf, g):C2 → C2 with a non...
AbstractA brief and elementary proof is given for a theorem of Bass, Connell and Wright. Suppose F =...
AbstractWe give some relations between Jacobians and minimal polynomials of n polynomials in n varia...
We give some relations between Jacobians and minimal polynomials of n polynomials in n variables, wh...
This work is related to the Jacobian Conjecture. It contains the formulas concerning algebraic depen...
We extend a corollary in [2], yielding a sufficient and necessary condition for a polynomial map to ...
AbstractLet F:Cn→Cm be a polynomial map with degF=d≥2. We prove that F is invertible if m=n and ∑i=1...
AbstractLet F = (f,g): k2 → k2 be a polynomial mapping over a field k, with f,g ϵ k[x, y]. The princ...
Let F = (f,g): R2 → R2 be a polynomial map such that detDF (x,y) is different from zero for all (x,y...
The Jacobian conjecture over a field of characteristic zero is considered directly in view of the pa...
AbstractThe two-dimensional Jacobian conjecture states that given f and g in C[x, y], if the Jacobia...
AbstractThis paper contains conditions that are equivalent to the Jacobian Conjecture (JC) in two va...
Abstract. Let F: Cn → Cn be an invertible map for which both F and F−1 are polynomials. Then degF−1 ...
AbstractIt is proved in [M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to th...
AbstractIn this paper we present a new large class of polynomial mapsF=X+H:An→An(Definition 1.1) on ...
AbstractSeveral new conditions for the invertibility of a polynomial map (/tf, g):C2 → C2 with a non...
AbstractA brief and elementary proof is given for a theorem of Bass, Connell and Wright. Suppose F =...
AbstractWe give some relations between Jacobians and minimal polynomials of n polynomials in n varia...
We give some relations between Jacobians and minimal polynomials of n polynomials in n variables, wh...
This work is related to the Jacobian Conjecture. It contains the formulas concerning algebraic depen...
We extend a corollary in [2], yielding a sufficient and necessary condition for a polynomial map to ...
AbstractLet F:Cn→Cm be a polynomial map with degF=d≥2. We prove that F is invertible if m=n and ∑i=1...
AbstractLet F = (f,g): k2 → k2 be a polynomial mapping over a field k, with f,g ϵ k[x, y]. The princ...
Let F = (f,g): R2 → R2 be a polynomial map such that detDF (x,y) is different from zero for all (x,y...
The Jacobian conjecture over a field of characteristic zero is considered directly in view of the pa...
AbstractThe two-dimensional Jacobian conjecture states that given f and g in C[x, y], if the Jacobia...
AbstractThis paper contains conditions that are equivalent to the Jacobian Conjecture (JC) in two va...
Abstract. Let F: Cn → Cn be an invertible map for which both F and F−1 are polynomials. Then degF−1 ...
AbstractIt is proved in [M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to th...
AbstractIn this paper we present a new large class of polynomial mapsF=X+H:An→An(Definition 1.1) on ...