AbstractIn the recent years, the notion of slice regular functions has allowed the introduction of a quaternionic functional calculus. In this paper, motivated also by the applications in quaternionic quantum mechanics, see Adler (1995) [1], we study the quaternionic semigroups and groups generated by a quaternionic (bounded or unbounded) linear operator T=T0+iT1+jT2+kT3. It is crucial to note that we consider operators with components Tℓ (ℓ=0,1,2,3) that do not necessarily commute. Among other results, we prove the quaternionic version of the classical Hille–Phillips–Yosida theorem. This result is based on the fact that the Laplace transform of the quaternionic semigroup etT is the S-resolvent operator (T2−2Re[s]T+|s|2I)−1(s¯I−T), the quat...