AbstractCongruences modulo 8 for class numbers h and h∗ of Q(√m) and Q(√−m) are obtained, 3 < m ∈ Z squarefree. Let ε = t + u√m be the fundamental unit of Q(√m), then h∗ ≡ 3tuh if m ≡ 1(4); h∗ ≡ (1 + 2u2)tuh if m ≡ 2(4); 2h∗ = 3tuh if m ≡ 3(8); tuh ≡ 0 if m ≡ 7(8). And if ε = (a + b√m)2, a ≡ b ≡ 1(2), then h∗ ≡ (a ± 1 + (1 − N(ε))ab)h, where 4∣a±1
Let p ≡ 5 (mod 8) be a prime. Let h(p) denote the class number of the real quadratic field Q(√ p). I...
AbstractThe authors prove that the class number of the quadratic field Q(√−g) is divisible by 3 if g...
Abstract. Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √D)/2: x, y ∈ Z}. Su...
AbstractThis paper presents a general congruence modulo a certain power of 2 relating the class numb...
AbstractLet h(d) denote the class number of the quadratic field Q(√d) of discriminant d. A number of...
Let h(d) denote the class number of the quadratic field Q(√d) of discriminant d. A number of new det...
Let p ≡ 5 (mod 8) be a prime. Let h formula presented the class number of the quadratic field Q form...
Let h(d) denote the class number of the quadratic field Q(Jrd) of discriminant d. A number of new de...
AbstractWe prove a congruence modulo a certain power of 2 for the class numbers of the quadratic fie...
AbstractThe authors prove that the class number of the quadratic field Q(√−g) is divisible by 3 if g...
AbstractWe prove a congruence modulo a certain power of 2 for the class numbers of the quadratic fie...
AbstractThis paper presents a general congruence modulo a certain power of 2 relating the class numb...
Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √D)/2: x, y ∈ ℤ}. Suppose that...
AbstractLet Q(−k) be an imaginary quadratic field with discriminant −k and class number h, with k≠3,...
Let χ denote a primitive quadratic character mod M (or the trivial character) and let d be a fundame...
Let p ≡ 5 (mod 8) be a prime. Let h(p) denote the class number of the real quadratic field Q(√ p). I...
AbstractThe authors prove that the class number of the quadratic field Q(√−g) is divisible by 3 if g...
Abstract. Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √D)/2: x, y ∈ Z}. Su...
AbstractThis paper presents a general congruence modulo a certain power of 2 relating the class numb...
AbstractLet h(d) denote the class number of the quadratic field Q(√d) of discriminant d. A number of...
Let h(d) denote the class number of the quadratic field Q(√d) of discriminant d. A number of new det...
Let p ≡ 5 (mod 8) be a prime. Let h formula presented the class number of the quadratic field Q form...
Let h(d) denote the class number of the quadratic field Q(Jrd) of discriminant d. A number of new de...
AbstractWe prove a congruence modulo a certain power of 2 for the class numbers of the quadratic fie...
AbstractThe authors prove that the class number of the quadratic field Q(√−g) is divisible by 3 if g...
AbstractWe prove a congruence modulo a certain power of 2 for the class numbers of the quadratic fie...
AbstractThis paper presents a general congruence modulo a certain power of 2 relating the class numb...
Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √D)/2: x, y ∈ ℤ}. Suppose that...
AbstractLet Q(−k) be an imaginary quadratic field with discriminant −k and class number h, with k≠3,...
Let χ denote a primitive quadratic character mod M (or the trivial character) and let d be a fundame...
Let p ≡ 5 (mod 8) be a prime. Let h(p) denote the class number of the real quadratic field Q(√ p). I...
AbstractThe authors prove that the class number of the quadratic field Q(√−g) is divisible by 3 if g...
Abstract. Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √D)/2: x, y ∈ Z}. Su...