AbstractMotivated by Khovanov homology and relations between the Jones polynomial and graph polynomials, we construct a homology theory for embedded graphs from which the chromatic polynomial can be recovered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered from the Khovanov homology of an associated link. We apply this connection with Khovanov homology to show that the torsion-free part of our chromatic homology is independent of the choice of planar embedding of a graph. We extend our construction and categorify the Bollobás–Riordan polynomial (a generalization of the Tutte polynomial to embedded graphs). We prove that both our chromatic homology and the Khovanov homology of an associated...