AbstractThis paper presents a new axiomatic decision theory for choice under uncertainty. Unlike Bayesian decision theory where uncertainty is represented by a probability function, in our theory, uncertainty is given in the form of a likelihood function extracted from statistical evidence. The likelihood principle in statistics stipulates that likelihood functions encode all relevant information obtainable from experimental data. In particular, we do not assume any knowledge of prior probabilities. Consequently, a Bayesian conversion of likelihoods to posterior probabilities is not possible in our setting. We make an assumption that defines the likelihood of a set of hypotheses as the maximum likelihood over the elements of the set. We jus...