AbstractWe consider the Euler approximation of stochastic differential equations (SDEs) driven by Lévy processes in the case where we cannot simulate the increments of the driving process exactly. In some cases, where the driving process Y is a subordinated stable process, i.e., Y=Z(V) with V a subordinator and Z a stable process, we propose an approximation Y by Z(Vn) where Vn is an approximation of V. We then compute the rate of convergence for the approximation of the solution X of an SDE driven by Y using results about the stability of SDEs
This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-dri...
AbstractThe paper studies the rate of convergence of a weak Euler approximation for solutions to pos...
UnrestrictedLevy processes are the simplest generic class of processes having a.s. continuous paths ...
International audienceWe consider the Euler approximation of stochastic differential equations (SDEs...
We consider the Euler approximation of stochastic differential equations (SDEs) driven by Levy proce...
AbstractWe consider the Euler approximation of stochastic differential equations (SDEs) driven by Lé...
The Euler scheme is a well-known method of approximation of solutions of stochastic differential equ...
AbstractThe Euler scheme is a well-known method of approximation of solutions of stochastic differen...
We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study...
International audienceWe consider the approximate Euler scheme for Levy-driven stochastic differenti...
The paper studies the rate of convergence of the weak Euler approximation for solutions to SDEs driv...
AbstractThe paper studies the rate of convergence of the weak Euler approximation for solutions to S...
Abstract: Stochastic differential equations provide a useful means of intro-ducing stochasticity int...
Abstract. Convergence rates of adaptive algorithms for weak approximations of Ito ̂ stochastic diffe...
We provide a rate for the strong convergence of Euler approximations for stochastic differential equ...
This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-dri...
AbstractThe paper studies the rate of convergence of a weak Euler approximation for solutions to pos...
UnrestrictedLevy processes are the simplest generic class of processes having a.s. continuous paths ...
International audienceWe consider the Euler approximation of stochastic differential equations (SDEs...
We consider the Euler approximation of stochastic differential equations (SDEs) driven by Levy proce...
AbstractWe consider the Euler approximation of stochastic differential equations (SDEs) driven by Lé...
The Euler scheme is a well-known method of approximation of solutions of stochastic differential equ...
AbstractThe Euler scheme is a well-known method of approximation of solutions of stochastic differen...
We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study...
International audienceWe consider the approximate Euler scheme for Levy-driven stochastic differenti...
The paper studies the rate of convergence of the weak Euler approximation for solutions to SDEs driv...
AbstractThe paper studies the rate of convergence of the weak Euler approximation for solutions to S...
Abstract: Stochastic differential equations provide a useful means of intro-ducing stochasticity int...
Abstract. Convergence rates of adaptive algorithms for weak approximations of Ito ̂ stochastic diffe...
We provide a rate for the strong convergence of Euler approximations for stochastic differential equ...
This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-dri...
AbstractThe paper studies the rate of convergence of a weak Euler approximation for solutions to pos...
UnrestrictedLevy processes are the simplest generic class of processes having a.s. continuous paths ...