AbstractIn this paper, we employ Avery–Henderson fixed point theorem to study the existence of positive periodic solutions to the following nonlinear nonautonomous functional differential system with feedback control: dxdt=−r(t)x(t)+F(t,xt,u(t−δ(t))),dudt=−h(t)u(t)+g(t)x(t−σ(t)). We show that the system above has at least two positive periodic solutions under certain growth condition imposed on F
Abstract. In this paper, we study the existence and global asymptotic stability of positive periodic...
In this paper, we study the existence of positive periodic solutions to the equation x" = f (t,...
We obtain some existence results for multiple positive periodic solutions of some delay differential...
AbstractConsidered is the periodic functional differential system with a parameter, x′(t)=A(t,x(t))x...
In this paper we consider the existence, multiplicity, and nonexistence of positive periodic solutio...
AbstractIn our paper, by employing Krasnoselskii fixed point theorem, we investigate the existence o...
AbstractSufficient conditions are obtained for the existence and global attractivity of positive per...
AbstractSufficient conditions are obtained for the existence and global stability of a positive peri...
We study the following nonlinear equation dx(t)/dt=x(t)[a(t)-b(t)xα(t)-f(t,x(t))]+g(t), by using fix...
AbstractWe consider the existence, multiplicity and nonexistence of positive ω-periodic solutions fo...
AbstractWe apply the continuation theorem of coincidence degree theory to study the existence of pos...
AbstractWe prove the existence and multiplicity of positive T-periodic solution(s) for T-periodic eq...
This article studies the existence of positive periodic solutions for a class of strongly coupled di...
AbstractIn this paper, we establish the existence of four positive periodic solutions for the first ...
We establish the existence of positive periodic solutions for a first-order differential equation wi...
Abstract. In this paper, we study the existence and global asymptotic stability of positive periodic...
In this paper, we study the existence of positive periodic solutions to the equation x" = f (t,...
We obtain some existence results for multiple positive periodic solutions of some delay differential...
AbstractConsidered is the periodic functional differential system with a parameter, x′(t)=A(t,x(t))x...
In this paper we consider the existence, multiplicity, and nonexistence of positive periodic solutio...
AbstractIn our paper, by employing Krasnoselskii fixed point theorem, we investigate the existence o...
AbstractSufficient conditions are obtained for the existence and global attractivity of positive per...
AbstractSufficient conditions are obtained for the existence and global stability of a positive peri...
We study the following nonlinear equation dx(t)/dt=x(t)[a(t)-b(t)xα(t)-f(t,x(t))]+g(t), by using fix...
AbstractWe consider the existence, multiplicity and nonexistence of positive ω-periodic solutions fo...
AbstractWe apply the continuation theorem of coincidence degree theory to study the existence of pos...
AbstractWe prove the existence and multiplicity of positive T-periodic solution(s) for T-periodic eq...
This article studies the existence of positive periodic solutions for a class of strongly coupled di...
AbstractIn this paper, we establish the existence of four positive periodic solutions for the first ...
We establish the existence of positive periodic solutions for a first-order differential equation wi...
Abstract. In this paper, we study the existence and global asymptotic stability of positive periodic...
In this paper, we study the existence of positive periodic solutions to the equation x" = f (t,...
We obtain some existence results for multiple positive periodic solutions of some delay differential...