RésuméDans la théorie d'approximation figurent en particulier les problèmes d'approximation de compacts dans les espaces fonctionnels par des familles analytiques. On y traite le cas des variétés algébriques qui est le théorème de Vitushkin, auquel on donne une nouvelle démonstration fondée sur la méthode de Warren, avec précision des constantes. Puis on considère le cas des variétés analytiques dans lequel on établit également un résultat négatif d'approximation qui dit qu'une famille paramétrée analytiquement par N variables ne peut pas approcher le compact Λl,s mieux qu'à l'ordre (NlogN)−ls, lorsque N augmente. On termine en signalant des applications en problème inverse dans la théorie de Sturm–Liouville.AbstractIn the theory of approxi...
AbstractWe discuss Totik’s extension of the classical Bernstein theorem on polynomial approximation ...
The approximation theory contains many statements where the rate of approximation of a function by ...
Let $\theta\in\mathbb{R}^d$. We associate three objects to each approximation $(p,q)\in \mathbb{Z}^d...
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocPARIS-BIUSJ-...
A generalized approximation scheme via a sequence (p(,n)) of properties on a Banach space X is intro...
AbstractThis note reflects an extension of the methods of H.E. Warren for obtaining lower bounds for...
A generalized approximation scheme via a sequence (p(,n)) of properties on a Banach space X is intro...
La première partie de cette thèse exploite et développe la relation entre approximation diophantienn...
This thesis aims at providing a quantitative version of the following theorem : there are only finit...
We present an overview of some results about characterization of compactness in which the concept of...
We present an overview of some results about characterization of compactness in which the concept of...
AbstractThis note reflects an extension of the methods of H.E. Warren for obtaining lower bounds for...
In this paper we give a characterization of the relatively compact subsets of the so-called approxim...
The book incorporates research papers and surveys written by participants ofan International Scienti...
We consider approximation problems for a special space of d variate functions. We show that the prob...
AbstractWe discuss Totik’s extension of the classical Bernstein theorem on polynomial approximation ...
The approximation theory contains many statements where the rate of approximation of a function by ...
Let $\theta\in\mathbb{R}^d$. We associate three objects to each approximation $(p,q)\in \mathbb{Z}^d...
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocPARIS-BIUSJ-...
A generalized approximation scheme via a sequence (p(,n)) of properties on a Banach space X is intro...
AbstractThis note reflects an extension of the methods of H.E. Warren for obtaining lower bounds for...
A generalized approximation scheme via a sequence (p(,n)) of properties on a Banach space X is intro...
La première partie de cette thèse exploite et développe la relation entre approximation diophantienn...
This thesis aims at providing a quantitative version of the following theorem : there are only finit...
We present an overview of some results about characterization of compactness in which the concept of...
We present an overview of some results about characterization of compactness in which the concept of...
AbstractThis note reflects an extension of the methods of H.E. Warren for obtaining lower bounds for...
In this paper we give a characterization of the relatively compact subsets of the so-called approxim...
The book incorporates research papers and surveys written by participants ofan International Scienti...
We consider approximation problems for a special space of d variate functions. We show that the prob...
AbstractWe discuss Totik’s extension of the classical Bernstein theorem on polynomial approximation ...
The approximation theory contains many statements where the rate of approximation of a function by ...
Let $\theta\in\mathbb{R}^d$. We associate three objects to each approximation $(p,q)\in \mathbb{Z}^d...