AbstractWe prove a noncommutative version of a theorem of Schützenberger on the factorization of variable-length codes. As consequences, we obtain a positive answer to a weak form of the `factorization conjecture, a complete characterization of maximal and finite codes and a noncommutative extension of an invariance property due to Hansel and Perrin
AbstractThe Hajós property of groups is extensively used in connection with variable length codes. W...
AbstractWe give an algorithm constructing any finite maximal code over a two-letter alphabet A = {a,...
Trois thèmes ont été poursuivis dans la thèse : -On introduit les fonctions symétriques non commutat...
AbstractWe prove a noncommutative version of a theorem of Schützenberger on the factorization of var...
AbstractWe construct a family of finite maximal codes over the alphabet {a,b} which verify the facto...
The algebraic theory of variable-length codes was initiated by Schützenberger in the 1950s. Almost a...
AbstractThe algebraic theory of variable-length codes was initiated by Schützenberger in the 1950s. ...
AbstractWe give a new characterization of some factorizations of finite cyclic groups described by H...
AbstractThis paper is the second part of a work dealing with two Schützenberger's conjectures on var...
The investigation of the factorizing codes C, i.e., codes satisfying Schützenberger’s factorization ...
RésuméNous construisons une famille de codes qui vérifiant la conjecture de factorisation de Schütze...
AbstractThe investigation of the factorizing codes C, i.e., codes satisfying Schützenberger's factor...
International audienceThe triangle conjecture states that codes formed by words of the form a i ba j...
We study a certain kind of linear codes, namely divisible codes, over finite fields. These codes, in...
AbstractGiven languages Z,L⊆Σ∗,Z is L-decomposable (finitely L-decomposable, resp.) if there exists ...
AbstractThe Hajós property of groups is extensively used in connection with variable length codes. W...
AbstractWe give an algorithm constructing any finite maximal code over a two-letter alphabet A = {a,...
Trois thèmes ont été poursuivis dans la thèse : -On introduit les fonctions symétriques non commutat...
AbstractWe prove a noncommutative version of a theorem of Schützenberger on the factorization of var...
AbstractWe construct a family of finite maximal codes over the alphabet {a,b} which verify the facto...
The algebraic theory of variable-length codes was initiated by Schützenberger in the 1950s. Almost a...
AbstractThe algebraic theory of variable-length codes was initiated by Schützenberger in the 1950s. ...
AbstractWe give a new characterization of some factorizations of finite cyclic groups described by H...
AbstractThis paper is the second part of a work dealing with two Schützenberger's conjectures on var...
The investigation of the factorizing codes C, i.e., codes satisfying Schützenberger’s factorization ...
RésuméNous construisons une famille de codes qui vérifiant la conjecture de factorisation de Schütze...
AbstractThe investigation of the factorizing codes C, i.e., codes satisfying Schützenberger's factor...
International audienceThe triangle conjecture states that codes formed by words of the form a i ba j...
We study a certain kind of linear codes, namely divisible codes, over finite fields. These codes, in...
AbstractGiven languages Z,L⊆Σ∗,Z is L-decomposable (finitely L-decomposable, resp.) if there exists ...
AbstractThe Hajós property of groups is extensively used in connection with variable length codes. W...
AbstractWe give an algorithm constructing any finite maximal code over a two-letter alphabet A = {a,...
Trois thèmes ont été poursuivis dans la thèse : -On introduit les fonctions symétriques non commutat...