AbstractThere is increasing recognition of the influence of the flow field on the physiology of blood vessels and their development of pathology. Preliminary work is reported on a novel non-invasive technique, microbubble void imaging, which is based on ultrasound and controlled destruction of microbubble contrast agents, permitting flow visualisation and quantification of flow-induced mixing in large vessels. The generation of microbubble voids can be controlled both spatially and temporally using ultrasound parameters within the safety limits. Three different model vessel geometries—straight, planar-curved and helical—with known effects on the flow field and mixing were chosen to evaluate the technique. A high-frame-rate ultrasound system...