AbstractAn important problem in the theory of sparse approximation is to identify well-conditioned subsets of vectors from a general dictionary. In most cases, current results do not apply unless the number of vectors is smaller than the square root of the ambient dimension, so these bounds are too weak for many applications. This paper shatters the square-root bottleneck by focusing on random subdictionaries instead of arbitrary subdictionaries. It provides explicit bounds on the extreme singular values of random subdictionaries that hold with overwhelming probability. The results are phrased in terms of the coherence and spectral norm of the dictionary, which capture information about its global geometry. The proofs rely on standard tools...