AbstractDespite the long history of classical planning, there has been very little comparative analysis of the performance tradeoffs offered by the multitude of existing planning algorithms. This is partly due to the many different vocabularies within which planning algorithms are usually expressed. In this paper we show that refinement search provides a unifying framework within which various planning algorithms can be cast and compared. Specifically, we will develop refinement search semantics for planning, provide a generalized algorithm for refinement planning, and show that planners that search in the space of (partial) plans are specific instantiations of this algorithm. The different design choices in partial-order planning correspon...