AbstractLet L be a lattice (that is, a Z-module of finite rank), and let L=P(L) denote the family of convex polytopes with vertices in L; here, convexity refers to the underlying rational vector space V=Q⊗L. In this paper it is shown that any valuation on L satisfies the inclusion–exclusion principle, in the strong sense that appropriate extension properties of the valuation hold. Indeed, the core result is that the class of a lattice polytope in the abstract group L=P(L) for valuations on L can be identified with its characteristic function in V. In fact, the same arguments are shown to apply to P(M), when M is a module of finite rank over an ordered ring, and more generally to appropriate families of (not necessarily bounded) polyhedra