AbstractSeveral new facts concerning topologies of paratopological and semitopological groups are established. It is proved that every symmetrizable paratopological group with the Baire property is a topological group. If a paratopological group G is the preimage under a perfect homomorphism of a topological group, then G is also a topological group. If a paratopological group G is a dense Gδ-subset of a regular pseudocompact space X, then G is a topological group. If a paratopological group H is an image of a totally bounded topological group G under a continuous homomorphism, then H is also a topological group. If a first countable semitopological group G is Gδ-dense in some Hausdorff compactification of G, then G is a topological group m...