AbstractWe study Auslander's representation dimension of Artin algebras, which is by definition the minimal projective dimension of coherent functors on modules which are both generators and cogenerators. We show the following statements: (1) if an Artin algebra A is stably hereditary, then the representation dimension of A is at most 3. (2) If two Artin algebras are stably equivalent of Morita type, then they have the same representation dimension. Particularly, if two self-injective algebras are derived equivalent, then they have the same representation dimension. (3) Any incidence algebra of a finite partially ordered set over a field has finite representation dimension. Moreover, we use results on quasi-hereditary algebras to show that ...