RésuméSoit G un groupe de Lie connexe nilpotent et H un sous-groupe connexe de G. On calcule explicitement la distance à l'origine d'un point g∈G, en fonction de ses coordonnées exponentielles de seconde espèce. Ensuite, grâce a cette formule, on démontre que la distance à l'origine, dans H, d'un élément h∈H est majorée par une fonction polynomiale, en la distance à l'origine de h dans G. Le degré de ce polynôme est le rang de nilpotence du groupe G.AbstractLet G be a connected nilpotent Lie group and H a connected subgroup of G. We give an explicit formula for the distance to the origin with the exponential coordinates of the second kind of g∈G. Using this fact, we prove that the distance to the origin of any element in H is bounded by a p...
This paper is concerned with finite groups G(#) and G(#) of order n that are not isomorphic, and whe...
AbstractA result of Ben-Or, Coppersmith, Luby and Rubinfeld on testing whether a map between two gro...
Using the classification of the finite simple groups, we classify all finite generalized polygons ha...
AbstractIt is well known that we have an algebraic characterization of connected Lie groups of polyn...
AbstractWe establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Dan...
Artículo de publicación ISILinear and projective boundaries of Cayley graphs were introduced in [6] ...
SHAPE DISTANCE BETWEEN GROUPS Summary. — It is equally suitable to standardize between-groupe shape ...
Le G be a real Nilpotent, connected and simply connected Lie group. If H is lattice in G, we study t...
We investigate the minimum distance of the error correcting code formed by the homomorphisms between...
International audienceIn some cases, the nilpotent approximation of an almost-Riemannian structure c...
We introduce a new approach which makes it possible to compute upper bounds on the distance between ...
RésuméEtant donnés un groupe de Lie connexe unimodulaire G, et des champs de vecteurs invariants à g...
Nous établissons une nouvelle minoration de la distance entre deux racines d'un polynôme à coefficie...
Not availableCette thèse se compose de deux parties différentes : la première partie consiste à cara...
This paper is concerned with finite groups G(#) and G(#) of order n that are not isomorphic, and whe...
AbstractA result of Ben-Or, Coppersmith, Luby and Rubinfeld on testing whether a map between two gro...
Using the classification of the finite simple groups, we classify all finite generalized polygons ha...
AbstractIt is well known that we have an algebraic characterization of connected Lie groups of polyn...
AbstractWe establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie...
Cette thèse étudie plusieurs problèmes d'Analyse Harmonique sur les groupes de Lie exponentiels. Dan...
Artículo de publicación ISILinear and projective boundaries of Cayley graphs were introduced in [6] ...
SHAPE DISTANCE BETWEEN GROUPS Summary. — It is equally suitable to standardize between-groupe shape ...
Le G be a real Nilpotent, connected and simply connected Lie group. If H is lattice in G, we study t...
We investigate the minimum distance of the error correcting code formed by the homomorphisms between...
International audienceIn some cases, the nilpotent approximation of an almost-Riemannian structure c...
We introduce a new approach which makes it possible to compute upper bounds on the distance between ...
RésuméEtant donnés un groupe de Lie connexe unimodulaire G, et des champs de vecteurs invariants à g...
Nous établissons une nouvelle minoration de la distance entre deux racines d'un polynôme à coefficie...
Not availableCette thèse se compose de deux parties différentes : la première partie consiste à cara...
This paper is concerned with finite groups G(#) and G(#) of order n that are not isomorphic, and whe...
AbstractA result of Ben-Or, Coppersmith, Luby and Rubinfeld on testing whether a map between two gro...
Using the classification of the finite simple groups, we classify all finite generalized polygons ha...