AbstractWe consider the initial (boundary) value problem for the Kirchhoff equations in exterior domains or in the whole space of dimension three, and show that these problems admit time-global solutions, provided the norms of the initial data in the usual Sobolev spaces of appropriate order are sufficiently small. We obtain uniform estimates of the L1(R) norms with respect to time variable at each point in the domain, of solutions of initial (boundary) value problem for the linear wave equations. We then show that the estimates above yield the unique global solvability for the Kirchhoff equations
This paper is devoted to proving the almost global solvability of the Cauchy problem for the Kirchho...
In this article we study the existence and uniqueness of local solutions for the initial-boundary v...
AbstractThis paper deals with the asymptotic theory of initial value problems for semilinear wave eq...
AbstractWe consider the initial (boundary) value problem for the Kirchhoff equations in exterior dom...
AbstractIn this paper we derive the following two properties: the first one is a precise representat...
We give sufficient conditions for the global solvability of Kirchhoff equation in terms of the spect...
AbstractWe give sufficient conditions for the global solvability of Kirchhoff equation in terms of t...
We consider linear and non-linear Cauchy equations in the context of Sobolev spaces. In particular, ...
Abstract: Introducing a new simple energy estimate, we prove the global solvability of the classical...
We consider the Cauchy problem for the Kirchhoff equation on Td with initial data of small amplitude...
This paper is devoted to proving the global solvability of the Cauchy problem for the Kirchhoff equa...
Abstract. This article is devoted to review the known results on global wellposedness for the Cauchy...
This article is devoted to review the known results on global well-posedness for the Cauchy problem ...
The author proves that for initial data in a set S subset of suitable Sobolev spaces, the solutions ...
We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation i...
This paper is devoted to proving the almost global solvability of the Cauchy problem for the Kirchho...
In this article we study the existence and uniqueness of local solutions for the initial-boundary v...
AbstractThis paper deals with the asymptotic theory of initial value problems for semilinear wave eq...
AbstractWe consider the initial (boundary) value problem for the Kirchhoff equations in exterior dom...
AbstractIn this paper we derive the following two properties: the first one is a precise representat...
We give sufficient conditions for the global solvability of Kirchhoff equation in terms of the spect...
AbstractWe give sufficient conditions for the global solvability of Kirchhoff equation in terms of t...
We consider linear and non-linear Cauchy equations in the context of Sobolev spaces. In particular, ...
Abstract: Introducing a new simple energy estimate, we prove the global solvability of the classical...
We consider the Cauchy problem for the Kirchhoff equation on Td with initial data of small amplitude...
This paper is devoted to proving the global solvability of the Cauchy problem for the Kirchhoff equa...
Abstract. This article is devoted to review the known results on global wellposedness for the Cauchy...
This article is devoted to review the known results on global well-posedness for the Cauchy problem ...
The author proves that for initial data in a set S subset of suitable Sobolev spaces, the solutions ...
We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation i...
This paper is devoted to proving the almost global solvability of the Cauchy problem for the Kirchho...
In this article we study the existence and uniqueness of local solutions for the initial-boundary v...
AbstractThis paper deals with the asymptotic theory of initial value problems for semilinear wave eq...