AbstractWe describe and analyse three simple efficient algorithms with good probabilistic behaviour; two algorithms with run times of O(n(log n)2) which almost certainly find directed (undirected) Hamiltonian circuits in random graphs of at least cn log n edges, and an algorithm with a run time of O(n log n) which almost certainly finds a perfect matching in a random graph of at least cn log n edges. Auxiliary propositions regarding conversion between input distributions and the “de-randomization” of randomized algorithms are proved. A new model, the random access computer (RAC), is introduced specifically to treat run times in low-level complexity
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected...
In this article, we analyze the appearance of a Hamilton cycle in the following random process. The ...
All questions considered in this thesis are related to either some class of Random Graphs or to a ra...
We design a randomized algorithm that finds a Hamilton cycle in O(n) time with high probability in a...
We study the Hamilton cycle problem with input a random graph G ~ G(n,p) in two different settings. ...
We analyze the performance of a simple randomized algorithm for finding long cycles and 2-factors in...
We analyze the performance of a simple randomized algorithm for finding 2-factors in directed Hamilt...
We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph...
Abstract. Most NP- Complete problems have linear solutions when restricted to random graphs [2]. Ran...
We give tight bounds on the parallel complexity of some problems involving random graphs. Speci call...
The construction of the random intersection graph model is based on a randomfamily of sets. Such str...
AbstractWe describe a polynomial time (O(n3 log n)) algorithm which has a high probability of findin...
AbstractThe probability that a random graph with n vertices and cn log n edges contains a Hamiltonia...
<p>We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random gr...
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected...
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected...
In this article, we analyze the appearance of a Hamilton cycle in the following random process. The ...
All questions considered in this thesis are related to either some class of Random Graphs or to a ra...
We design a randomized algorithm that finds a Hamilton cycle in O(n) time with high probability in a...
We study the Hamilton cycle problem with input a random graph G ~ G(n,p) in two different settings. ...
We analyze the performance of a simple randomized algorithm for finding long cycles and 2-factors in...
We analyze the performance of a simple randomized algorithm for finding 2-factors in directed Hamilt...
We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph...
Abstract. Most NP- Complete problems have linear solutions when restricted to random graphs [2]. Ran...
We give tight bounds on the parallel complexity of some problems involving random graphs. Speci call...
The construction of the random intersection graph model is based on a randomfamily of sets. Such str...
AbstractWe describe a polynomial time (O(n3 log n)) algorithm which has a high probability of findin...
AbstractThe probability that a random graph with n vertices and cn log n edges contains a Hamiltonia...
<p>We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random gr...
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected...
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected...
In this article, we analyze the appearance of a Hamilton cycle in the following random process. The ...
All questions considered in this thesis are related to either some class of Random Graphs or to a ra...