AbstractLet f map a Banach space X into itself, and let x1, x2,…, xn be distinct points of X. Then there exists a polynomial y(x) of degree (n − 1) which interpolates f at these points. Furthermore, y(x) has a Lagrange representation y(x)=∑i=1n[w′i(xi)]−1wi(x)(x−xi)f(xi), where wi(x) = Li(x − x1, x − x2,…, x − xn), wi′(xi) is the first Fréchet derivative of wi at xi, and Li, i = 1, 2,…, n, is an appropriately chosen n-linear operator. In an analogous manner, an Hermite polynomial y(x) of degree (2n − 1) is derived, which interpolates f and f′ at x1, x2,…, xn. Finally, if X is a Hilbert space, the polynomials y(x) and y(x) are shown to have simple representations in terms of inner products
(communicated by J. Matkowski) Abstract. Let m2 < m1 be two given nonnegative integers with n = m...
AbstractA simple proof of a recent result of G. Berger and M. Tasche concerning the coefficients of ...
Praca porusza temat interpolacji wielomianowej, której celem jest znalezienie wielomianu odpowiednie...
AbstractFor distinct points x0, x1, …, xn in R, a function f of Cd[a,b] and nonnegative integers d0,...
AbstractFor given arbitrary numbers αk,n, 1 ≤ k ≤ n, and βk,n, 1 ≤ k ≤n − 1, we seek to determine ex...
AbstractFor given arbitrary numbers αk,n, 1 ≤ k ≤ n, and βk,n, 1 ≤ k ≤n − 1, we seek to determine ex...
A class of spaces of multivariate polynomials, closed under differentiation, is studied and correspo...
AbstractWe show that Kergin interpolation, a generalized Lagrange–Hermite polynomial interpolation, ...
AbstractFor f∈C[−1,1], let Hm,n(f,x) denote the (0, 1, …,anbsp;m) Hermite–Fejér (HF) interpolation p...
summary:Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex ...
We investigate the uniform convergence of Lagrange interpolation at the zeros of Hermite polynomials...
Abstract. Let z1,..., zK be distinct grid points. If fk,0 is the prescribed value of a function at t...
For a fixed integer and , let denote the th fundamental polynomial for Hermite–Fejér ...
We investigate the uniform convergence of Lagrange interpolation at the zeros of Hermite polynomials...
AbstractLet D be a domain in the complex plane, let {zn} be a sequence of distinct points in D, and ...
(communicated by J. Matkowski) Abstract. Let m2 < m1 be two given nonnegative integers with n = m...
AbstractA simple proof of a recent result of G. Berger and M. Tasche concerning the coefficients of ...
Praca porusza temat interpolacji wielomianowej, której celem jest znalezienie wielomianu odpowiednie...
AbstractFor distinct points x0, x1, …, xn in R, a function f of Cd[a,b] and nonnegative integers d0,...
AbstractFor given arbitrary numbers αk,n, 1 ≤ k ≤ n, and βk,n, 1 ≤ k ≤n − 1, we seek to determine ex...
AbstractFor given arbitrary numbers αk,n, 1 ≤ k ≤ n, and βk,n, 1 ≤ k ≤n − 1, we seek to determine ex...
A class of spaces of multivariate polynomials, closed under differentiation, is studied and correspo...
AbstractWe show that Kergin interpolation, a generalized Lagrange–Hermite polynomial interpolation, ...
AbstractFor f∈C[−1,1], let Hm,n(f,x) denote the (0, 1, …,anbsp;m) Hermite–Fejér (HF) interpolation p...
summary:Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex ...
We investigate the uniform convergence of Lagrange interpolation at the zeros of Hermite polynomials...
Abstract. Let z1,..., zK be distinct grid points. If fk,0 is the prescribed value of a function at t...
For a fixed integer and , let denote the th fundamental polynomial for Hermite–Fejér ...
We investigate the uniform convergence of Lagrange interpolation at the zeros of Hermite polynomials...
AbstractLet D be a domain in the complex plane, let {zn} be a sequence of distinct points in D, and ...
(communicated by J. Matkowski) Abstract. Let m2 < m1 be two given nonnegative integers with n = m...
AbstractA simple proof of a recent result of G. Berger and M. Tasche concerning the coefficients of ...
Praca porusza temat interpolacji wielomianowej, której celem jest znalezienie wielomianu odpowiednie...